Statistical mechanics of the fluctuating lattice Boltzmann equation.
نویسندگان
چکیده
We propose a derivation of the fluctuating lattice Boltzmann equation that is consistent with both equilibrium statistical mechanics and fluctuating hydrodynamics. The formalism is based on a generalized lattice-gas model, with each velocity direction occupied by many particles. We show that the most probable state of this model corresponds to the usual equilibrium distribution of the lattice Boltzmann equation. Thermal fluctuations about this equilibrium are controlled by the mean number of particles at a lattice site. Stochastic collision rules are described by a Monte Carlo process satisfying detailed balance. This allows for a straightforward derivation of discrete Langevin equations for the fluctuating modes. It is shown that all nonconserved modes should be thermalized, as first pointed out by Adhikari et al. [Europhys. Lett. 71, 473 (2005)]; any other choice violates the condition of detailed balance. A Chapman-Enskog analysis is used to derive the equations of fluctuating hydrodynamics on large length and time scales; the level of fluctuations is shown to be thermodynamically consistent with the equation of state of an isothermal, ideal gas. We believe this formalism will be useful in developing new algorithms for thermal and multiphase flows.
منابع مشابه
Progress in the understanding of the fluctuating lattice Boltzmann equation
We give a brief account of the development of methods to include thermal fluctuations into lattice Boltzmann algorithms. Emphasis is put on our recent work (Phys. Rev. E 76, 036704 (2007)) which provides a clear understanding in terms of statistical mechanics.
متن کاملNumerical simulation of a three-layered radiant porous heat exchanger including lattice Boltzmann simulation of fluid flow
This paper deals with the hydrodynamic and thermal analysis of a new type of porous heat exchanger (PHE). This system operates based on energy conversion between gas enthalpy and thermal radiation. The proposed PHE has one high temperature (HT) and two heat recovery (HR1 and HR2) sections. In HT section, the enthalpy of flowing high temperature gas flow that is converted to thermal radiation em...
متن کاملFluctuating Lattice Boltzmann
– The lattice Boltzmann algorithm efficiently simulates the Navier Stokes equation of isothermal fluid flow, but ignores thermal fluctuations of the fluid, important in mesoscopic flows. We show how to adapt the algorithm to include noise, satisfying a fluctuation-dissipation theorem (FDT) directly at lattice level: this gives correct fluctuations for mass and momentum densities, and for stress...
متن کاملMajorana Returns: the Dirac-Boltzmann Connection
Formal and substantial analogies between the Boltzmann equation of classical statistical physics and the Dirac equation for relativistic quantum mechanics are discussed, with special emphasis on the Majorana representation of the Dirac equation, in which all matrices are real. It is shown that this property is instrumental in turning the Boltzmann-Dirac analogy into an efficient computational m...
متن کاملNumerical Simulation of Fluid Flow Past a Square Cylinder Using a Lattice Boltzmann Method
The method of lattice boltzmann equation(LBE) is a kinetic-based approach for fluid flow computations. In the last decade, minimal kinetic models, and primarily the LBE, have met with significant success in the simulation of complex hydrodynamic phenomena, ranging from slow flows in grossly irregular geometries to fully developed turbulence, to flow with dynamic phase transitions. In the presen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 76 3 Pt 2 شماره
صفحات -
تاریخ انتشار 2007